CORRIGENDUM TO MAHLER MEASURE OF A NON-RECIPROCAL FAMILY OF ELLIPTIC CURVES, Q. J. MATH. 74 (2023), 1187-1208

DETCHAT SAMART

There is a sign error in the formula in Theorem 1, which also has an impact on the formula for $\tilde{n}(\alpha)$ underneath. The corrected formulas are as follows:

Theorem 1. Let $\tilde{n}(\alpha)=n(\alpha)-3 J(\alpha)$. For $\alpha \in(-1,3) \backslash\{0\}$, the following identities are true:

$$
\begin{aligned}
\tilde{n}(\alpha) & =\frac{4}{1-3 \operatorname{sgn}(\alpha)} \operatorname{Re}\left(\log \alpha-\frac{2}{\alpha^{3}}{ }_{4} F_{3}\left(\begin{array}{cc|c}
\frac{4}{3}, \frac{5}{3}, 1,1 & \frac{27}{\alpha^{3}} &) \\
2,2,2 & \sqrt{3} \\
& =s(\alpha)\left(\frac{\sqrt[3]{2} \Gamma\left(\frac{1}{6}\right) \Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{1}{2}\right)}{\sqrt{3} \pi^{2}} \alpha_{3} F_{2}\left(\left.\begin{array}{c}
\frac{1}{3}, \frac{1}{3}, \\
\frac{2}{3}, \\
\frac{2}{3}
\end{array} \right\rvert\, \frac{\alpha^{3}}{27}\right)+\frac{\Gamma^{3}\left(\frac{2}{3}\right)}{2 \pi^{2}} \alpha^{2}{ }_{3} F_{2}\left(\begin{array}{c}
\frac{2}{3}, \frac{2}{3}, \frac{2}{3} \\
\frac{4}{3}, \frac{5}{3}
\end{array}\right.\right. & \frac{\alpha^{3}}{27}
\end{array}\right)\right),
\end{aligned}
$$

where $s(\alpha)=-\frac{(1+3 \operatorname{sgn}(\alpha))^{2}}{64}$.
Moreover, the equality

$$
J(\alpha)=-\frac{1}{2 \pi} \int_{\gamma_{J}^{\prime}} \eta(x, y)
$$

in the proof of Lemma 9 is incorrect. We need to use a different path with the prescribed endpoints to alter the integral $J(\alpha)$ so that its value remains unchanged. Below is a modified proof of Lemma 9.

Proof of Lemma 9. We label the six toric points as follows:

$$
\begin{aligned}
& P_{1}^{ \pm}=\left(1, y_{ \pm}(1)\right)=\left(1, Y_{ \pm}\right), \\
& P_{2}^{ \pm}=\left(e^{ \pm i c(\alpha)}, y_{+}\left(e^{ \pm i c(\alpha)}\right)\right)=\left(Y_{ \pm}, 1\right), \\
& P_{3}^{ \pm}=\left(e^{ \pm i c(\alpha)}, y_{-}\left(e^{ \pm i c(\alpha)}\right)\right)=\left(Y_{ \pm}, Y_{ \pm}\right),
\end{aligned}
$$

where $c(\alpha)=\cos ^{-1}\left(\frac{\alpha-1}{2}\right)$ and

$$
Y_{ \pm}=\frac{\alpha-1}{2} \pm \frac{\sqrt{(3-\alpha)(\alpha+1)}}{2} i
$$

Observe that $\tilde{n}(\alpha)$ can be rewritten as $\tilde{n}(\alpha)=I(\alpha)-2 J(\alpha)$, where

$$
\begin{aligned}
& I(\alpha)=\frac{1}{2 \pi} \int_{-c(\alpha)}^{c(\alpha)} \log \left|y_{+}\left(e^{i \theta}\right)\right| \mathrm{d} \theta \\
& J(\alpha)=\frac{1}{2 \pi} \int_{c(\alpha)}^{2 \pi-c(\alpha)} \log \left|y_{+}\left(e^{i \theta}\right)\right| \mathrm{d} \theta
\end{aligned}
$$

Date: October 26, 2023.

Let $S=\left\{P_{1}^{ \pm}, P_{2}^{ \pm}, P_{3}^{ \pm}\right\}$. Then we may identify the paths corresponding to $I(\alpha)$ and $J(\alpha)$ as elements in the relative homology $H_{1}\left(E_{\alpha}, S, \mathbb{Z}\right)$, say γ_{I} and γ_{J}, respectively. In other words, we write

$$
I(\alpha)=-\frac{1}{2 \pi} \int_{\gamma_{I}} \eta(x, y), \quad J(\alpha)=-\frac{1}{2 \pi} \int_{\gamma_{J}} \eta(x, y)
$$

and boundaries of these paths can be seen as 0 -cycles on S. Computing the limits of $y_{+}\left(e^{i \theta}\right)$ as θ approaches $0, c(\alpha)$, and $-c(\alpha)$ from both sides, we find that

$$
\begin{aligned}
\lim _{\theta \rightarrow-c(\alpha)^{+}} y_{+}\left(e^{i \theta}\right) & =\lim _{\theta \rightarrow c(\alpha)^{-}} y_{+}\left(e^{i \theta}\right)=1 \\
\lim _{\theta \rightarrow 0^{+}} y_{+}\left(e^{i \theta}\right) & =Y_{-} \\
\lim _{\theta \rightarrow 0^{-}} y_{+}\left(e^{i \theta}\right) & =Y_{+}
\end{aligned}
$$

Therefore, the path γ_{I} is discontinuous at $\theta=0$ and

$$
\begin{equation*}
\partial \gamma_{I}=\left[\left[P_{1}^{+}\right]-\left[P_{2}^{-}\right]\right]+\left[\left[P_{2}^{+}\right]-\left[P_{1}^{-}\right]\right] . \tag{0.1}
\end{equation*}
$$

This is illustrated in Figure 1 for $\alpha=2$, where the dashed curves in the upper-half plane and the lower-half plane, both oriented counterclockwise, correspond to $\theta \in(-c(\alpha), 0)$ and $\theta \in(0, c(\alpha))$, respectively. Next, observe that

Figure 1. $y_{+}\left(e^{i \theta}\right), \theta \in[0,2 \pi)$

$$
\lim _{\theta \rightarrow c(\alpha)^{+}} y_{-}\left(e^{i \theta}\right)=1=\lim _{\theta \rightarrow-c(\alpha)^{-}} y_{-}\left(e^{i \theta}\right),
$$

and γ_{J} can be identified as the path $\left\{\left(e^{i \theta}, y_{-}\left(e^{i \theta}\right)\right) \mid c(\alpha)<\theta<2 \pi-c(\alpha)\right\}$ (with reversed orientation), implying

$$
\begin{equation*}
\partial \gamma_{J}=\left[\left[P_{2}^{+}\right]-\left[P_{2}^{-}\right]\right] \tag{0.2}
\end{equation*}
$$

(For $\alpha=2$, the y-coordinate of this path is the bold curve inside the unit circle, as illustrated in Figure 2, oriented clockwise.) Define

$$
\gamma_{J}^{\prime}=\left\{\left.\left(\frac{1}{y_{-}\left(e^{i \theta}\right)}, y_{-}\left(\frac{1}{y_{-}\left(e^{i \theta}\right)}\right)\right) \right\rvert\, c(\alpha)<\theta<2 \pi-c(\alpha)\right\} .
$$

By some calculation, one sees that

$$
\begin{aligned}
y_{-}\left(\frac{1}{y_{-}\left(e^{i \theta}\right)}\right) & =e^{-i \theta}, \\
\lim _{\theta \rightarrow c(\alpha)^{+}} y_{-}\left(e^{i \theta}\right) & =1=\lim _{\theta \rightarrow-c(\alpha)^{-}} y_{-}\left(e^{i \theta}\right),
\end{aligned}
$$

implying

$$
\begin{equation*}
\partial \gamma_{J}^{\prime}=\left[\left[P_{1}^{+}\right]-\left[P_{1}^{-}\right]\right] . \tag{0.3}
\end{equation*}
$$

Moreover, we have

$$
\begin{aligned}
\int_{\gamma_{J}} \eta(x, y) & =-\int_{c(\alpha)}^{2 \pi-c(\alpha)} \log \left|y_{+}\left(e^{i \theta}\right)\right| \mathrm{d} \theta \\
& =\int_{c(\alpha)}^{2 \pi-c(\alpha)} \log \left|y_{-}\left(e^{i \theta}\right)\right| \mathrm{d} \theta \\
& =\int_{c(\alpha)}^{2 \pi-c(\alpha)} \log \left(\left|1 / y_{-}\left(e^{i \theta}\right)\right|\right) \mathrm{d}(-\theta) \\
& =\int_{\gamma_{J}^{\prime}} \eta(x, y) .
\end{aligned}
$$

Finally, we arrive at

$$
\tilde{n}(\alpha)=I(\alpha)-2 J(\alpha)=-\frac{1}{2 \pi}\left(\int_{\gamma_{I}} \eta(x, y)-\int_{\gamma_{J}} \eta(x, y)-\int_{\gamma_{J}^{\prime}} \eta(x, y)\right)=-\frac{1}{2 \pi} \int_{\tilde{\gamma}_{\alpha}} \eta(x, y),
$$

where, by $(0.1),(0.2)$, and (0.3), $\tilde{\gamma}_{\alpha}$ has trivial boundary, from which we can conclude that $\tilde{\gamma}_{\alpha} \in H_{1}\left(E_{\alpha}, \mathbb{Z}\right)$. It is clear from the construction of the paths γ_{I}, γ_{J}, and γ_{J}^{\prime} that they are anti-invariant under the action of complex conjugation. Therefore, we have $\tilde{\gamma}_{\alpha} \in H_{1}\left(E_{\alpha}, \mathbb{Z}\right)^{-}$, as desired.

I would like to thank Yusuke Nemoto and Zhengyu Tao for bringing these errors to my attention.

Department of Mathematics, Faculty of Science, Burapha University, Chonburi, ThaiLAND 20131

Email address: petesamart@gmail.com

